3,591 research outputs found

    New insights into the spin structure of the nucleon

    Get PDF
    We analyze the low-energy spin structure of the nucleon in a covariant effective field theory with explicit spin-3/2 degrees of freedom to third order in the small scale expansion. Using the available data on the strong and electromagnetic width of the Delta-resonance, we give parameter-free predictions for various spin-polarizabilities and moments of spin structure functions. We find an improved description of the nucleon spin structure at finite photon virtualities for some observables and point out the necessity of a fourth order calculation.Comment: 13 pages, 6 figure

    Subleading contributions to the chiral three-nucleon force I: long-range terms

    Get PDF
    We derive the long-range contributions to the tree-nucleon force at next-to-next-to-next-to-leading order in the chiral expansion. We give both momentum and coordinate space representations.Comment: 15 pages, 4 figure

    The reaction pi N -> pi pi N in chiral effective field theory with explicit Delta(1232) degrees of freedom

    Full text link
    The reaction pi N -> pi pi N is studied at tree level up to next-to-leading order in the framework of manifestly covariant baryon chiral perturbation theory with explicit Delta(1232) degrees of freedom. Using total cross section data to determine the relevant low-energy constants, predictions are made for various differential as well as total cross sections at higher energies. A detailed comparison of results based on the heavy-baryon and relativistic formulations of chiral perturbation theory with and without explicit Delta degrees of freedom is given.Comment: 30 pages, 13 figure

    Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    Get PDF
    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β\beta-functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide a clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ\Delta-resonance. The explicit inclusion of the leading contributions of the Δ\Delta-isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the ones from the recent Roy-Steiner-equation analysis of pion-nucleon scattering

    Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Get PDF
    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the SS- and PP-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the DD and FF waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.Comment: 41 pages, 12 figures, 7 table

    Subleading contributions to the chiral three-nucleon force II: Short-range terms and relativistic corrections

    Get PDF
    We derive the short-range contributions and the leading relativistic corrections to the three-nucleon force at next-to-next-to-next-to-leading order in the chiral expansion.Comment: 14 pages, 4 figure

    Spin Glass and ferromagnetism in disordered Cerium compounds

    Full text link
    The competition between spin glass, ferromagnetism and Kondo effect is analysed here in a Kondo lattice model with an inter-site random coupling JijJ_{ij} between the localized magnetic moments given by a generalization of the Mattis model which represents an interpolation between ferromagnetism and a highly disordered spin glass. Functional integral techniques with Grassmann fields have been used to obtain the partition function. The static approximation and the replica symmetric ansatz have also been used. The solution of the problem is presented as a phase diagram giving T/JT/{J} {\it versus} JK/JJ_K/J where TT is the temperature, JKJ_{K} and J{J} are the strengths of the intrasite Kondo and the intersite random couplings, respectively. If JK/JJ_K/{J} is small, when temperature is decreased, there is a second order transition from a paramagnetic to a spin glass phase. For lower T/JT/{J}, a first order transition appears between the spin glass phase and a region where there are Mattis states which are thermodynamically equivalent to the ferromagnetism. For very low T/J{T/{J}}, the Mattis states become stable. On the other hand, it is found as solution a Kondo state for large JK/JJ_{K}/{J} values. These results can improve the theoretical description of the well known experimental phase diagram of CeNi1xCuxCeNi_{1-x}Cu_{x}.Comment: 17 pages, 5 figures, accepted Phys. Rev.

    Pion production in nucleon-nucleon collisions in chiral effective field theory: next-to-next-to-leading order contributions

    Get PDF
    A complete calculation of the pion-nucleon loops that contribute to the transition operator for NNNNπNN\to NN\pi up-to-and-including next-to-next-to-leading order (N2^2LO) in chiral effective field theory near threshold is presented. The evaluation is based on the so-called momentum counting scheme, which takes into account the relatively large momentum of the initial nucleons inherent in pion-production reactions. We show that the significant cancellations between the loops found at next-to-leading order (NLO) in the earlier studies are also operative at N2^2LO. In particular, the 1/mN1/m_N corrections (with mNm_N being the nucleon mass) to loop diagrams cancel at N2^2LO, as do the contributions of the pion loops involving the low-energy constants cic_i, i=1...4. In contrast to the NLO calculation however, the cancellation of loops at N2^2LO is incomplete, yielding a non-vanishing contribution to the transition amplitude. Together with the one-pion exchange tree-level operators, the loop contributions provide the long-range part of the production operator. Finally, we discuss the phenomenological implications of these findings. In particular, we find that the amplitudes generated by the N2^2LO pion loops yield contributions comparable in size with the most important phenomenological heavy-meson exchange amplitudes.Comment: 28 pages, 7 figures, 2 table

    Threshold neutral pion photoproduction off the tri-nucleon to O(q^4)

    Get PDF
    We calculate electromagnetic neutral pion production off tri-nucleon bound states (3H, 3He) at threshold in chiral nuclear effective field theory to fourth order in the standard heavy baryon counting. We show that the fourth order two-nucleon corrections to the S-wave multipoles at threshold are very small. This implies that a precise measurement of the S-wave cross section for neutral pion production off 3He allows for a stringent test of the chiral perturbation theory prediction for the S-wave electric multipole E_{0+}^{pi0 n}.Comment: 17 pages, 5 figures, title changed, final version to appear in EPJA. arXiv admin note: substantial text overlap with arXiv:1103.340
    corecore